Individual adaptation: an adaptive MCMC scheme for variable selection problems
نویسندگان
چکیده
The increasing size of data sets has lead to variable selection in regression becoming increasingly important. Bayesian approaches are attractive since they allow uncertainty about the choice of variables to be formally included in the analysis. The application of fully Bayesian variable selection methods to large data sets is computationally challenging. We describe an adaptive Markov chain Monte Carlo approach called Individual Adaptation which adjusts a general proposal to the data. We show that the algorithm is ergodic and discuss its use within parallel tempering and sequential Monte Carlo approaches. We illustrate the use of the method on two data sets including a gene expression analysis with 22 577 variables.
منابع مشابه
Adaptive Markov chain Monte Carlo for Bayesian Variable Selection
We describe adaptive Markov chain Monte Carlo (MCMC) methods for sampling posterior distributions arising from Bayesian variable selection problems. Point mass mixture priors are commonly used in Bayesian variable selection problems in regression. However, for generalized linear and nonlinear models where the conditional densities cannot be obtained directly, the resulting mixture posterior may...
متن کاملBayesian Computation and the Linear Model
This paper is a review of computational strategies for Bayesian shrinkage and variable selection in the linear model. Our focus is less on traditional MCMC methods, which are covered in depth by earlier review papers. Instead, we focus more on recent innovations in stochastic search and adaptive MCMC, along with some comparatively new research on shrinkage priors. One of our conclusions is that...
متن کاملThe Impact of Mutation Rate on the Computation Time of Evolutionary Dynamic Optimization
Mutation has traditionally been regarded as an important operator in evolutionary algorithms. In particular, there have been many experimental studies which showed the effectiveness of adapting mutation rates for various static optimization problems. Given the perceived effectiveness of adaptive and self-adaptive mutation for static optimization problems, there have been speculations that adapt...
متن کاملAdaptive Unstructured Grid Generation Scheme for Solution of the Heat Equation
An adaptive unstructured grid generation scheme is introduced to use finite volume (FV) and finite element (FE) formulation to solve the heat equation with singular boundary conditions. Regular grids could not acheive accurate solution to this problem. The grid generation scheme uses an optimal time complexity frontal method for the automatic generation and delaunay triangulation of the grid po...
متن کاملAdaptive Scheduling in MCMC and Probabilistic Programming
We introduce an adaptive output-sensitive inference algorithm for MCMC and probabilistic programming, Adaptive Random Database. The algorithm is based on a single-site updating Metropolis-Hasting sampler, the Random Database (RDB) algorithm. Adaptive RDB (ARDB) differs from the original RDB in that the schedule of selecting variables proposed for modification is adapted based on the output of o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015